Fine-scale structure of the extratropical tropopause region
نویسنده
چکیده
[1] A vertically high resolved climatology of the thermal and wind structure of the extratropical tropopause region is presented. The climatology is based on data from 80 U.S. radiosonde stations covering the period 1998–2002. Time averages for each radiosonde station are computed using the tropopause as a common reference level for all vertical profiles within the mean. A strong inversion at the tropopause in the mean vertical temperature gradient is uncovered; that is, temperature strongly increases with altitude within the lowermost stratosphere. This tropopause inversion layer exists on average throughout the investigated extratropics (about 30 N to 70 N). Accordingly, the static stability parameter shows considerably enhanced values within the lowermost extratropical stratosphere compared to typical extratropical stratospheric values further aloft. Conventional averages are not able to capture the tropopause inversion layer. Mean profiles of the horizontal wind show behavior qualitatively corresponding to thermal wind balance. Winter and summer exhibit distinctly different climate states in the extratropical tropopause region. An approximated potential vorticity is considered and found to be close to well mixed within the troposphere as well as within the tropopause inversion layer. This suggests the view of the tropopause inversion layer as representing a dynamically active atmospheric layer. Some potential implications are discussed.
منابع مشابه
On the Signatures of Equatorial and Extratropical Wave Forcing in Tropical Tropopause Layer Temperatures
Temperatures in the tropical tropopause layer (TTL) play an important role in stratosphere–troposphere exchange and in the formation and maintenance of thin cirrus clouds. Many previous studies have examined the contributions of extratropical and equatorial waves to the TTL using coarse-vertical-resolution satellite and reanalysis data. In this study, the authors provide new insight into the ro...
متن کاملSeasonality and extent of extratropical TST derived from in-situ CO measurements during SPURT
We present airborne in-situ trace gas measurements which were performed on eight campaigns between November 2001 and July 2003 during the SPURT-project (SPURenstofftransport in der Tropopausenregion, trace gas transport in the tropopause region). The measurements on a quasi regular basis allowed an overview of the seasonal variations of the trace gas distribution in the tropopause region over E...
متن کاملIntraseasonal Variability of the Zonal-Mean Extratropical Tropopause Height
The physical processes that drive the fluctuations of the extratropical tropopause height are examined with the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis data. A composite zonal-mean heat budget analysis for the Northern Hemisphere winter shows that fluctuations in the extratropical tropopause height result not only from a warm...
متن کاملResidual Circulation and Tropopause Structure
The effect of large-scale dynamics as represented by the residual mean meridional circulation in the transformed Eulerian sense, in particular its stratospheric part, on lower stratospheric static stability and tropopause structure is studied using a comprehensive chemistry–climate model (CCM), reanalysis data, and simple idealized modeling. Dynamical forcing of static stability as associated w...
متن کاملSelf-Organization of Atmospheric Macroturbulence into Critical States of Weak Nonlinear Eddy–Eddy Interactions
It is generally held that atmospheric macroturbulence can be strongly nonlinear. Yet weakly nonlinear models successfully account for scales and structures of baroclinic eddies in Earth’s atmosphere. Here a theory and simulations with an idealized GCM are presented that suggest weakly nonlinear models are so successful because atmospheric macroturbulence organizes itself into critical states of...
متن کامل